М
о
з
 г
,

р
а
з
у
м

и

п
о
в
е
д
е
н
и
е
 


 

ЛАБОРАТОРИЯ ПРОСТРАНСТВ
galactic.org.ua
ЧЕЛОВЕК
 

                   
          Зрение

   
3.
4.


 Два глаза - один мир

Можно описать многие аспекты того, как мы видим, но они еще не получили точного биологического объяснения. Возможно даже, что некоторые стороны этого процесса вообще еще не выявлены.* Переработкой зрительной информации занята значительная часть нашего мозга, но насколько велика эта часть, ученые затрудняются сказать даже приблизительно.

* Например в 2002 году, уже после выхода этой книги, российские физиологи исследовали способность учеников В.М. Бронникова читать тексты закрытыми глазами. В науку введен термин - "альтернативное видение". Подробнее...

Мы знаем, что у нас два глаза, но мы почти всегда видим только один внешний мир. Эта способность объединять информацию, идущую от обоих глаз, основана на двух важнейших свойствах зрительной системы.

Во-первых, движения наших глаз, когда мы осматриваем ими окружающее, сложным образом скоординированы. Если вы, глядя на острый край какого-нибудь предмета, легонько надавите сбоку на глазное яблоко, то в этот миг увидите оба изображения, из которых складывается одно. Для слияния изображений особенно важны нейроны верхних бугорков четверохолмия. Эти клетки лучше реагируют на движущиеся раздражители. Они тоже организованы в вертикальные колонки, клетки которых отвечают на сигналы, идущие из одних и тех же участков поля зрения. Оказалось, что клетки, расположенные в самом низу колонки, активируются непосредственно перед тем, как происходит спонтанное движение глаз. Их активность служит пусковым механизмом для глазодвигательных нейронов; последние вызывают сокращение соответствующих мышц, а те перемещают глаз таким образом, чтобы участок поля зрения, где что-то движется, проецировался на центральную ямку. Так, поворачивая вместе оба глаза, мы «обращаем свое внимание» туда, где блеснула вспышка света или что-то передвинулось, чтобы получше рассмотреть это «что-то».

Клетки, расположенные в глубоких слоях верхних бугорков, получают также слуховую информацию и реагируют на звук. Слуховая информация, объединяющаяся в этих клетках со зрительной, вызывает посылку сигналов на более низкий уровень - клеткам среднего мозга, управляющим мышцами глазного яблока. С помощью этих мышц вы переводите взгляд туда, где, как сообщает ваш слух, в этот момент что-то происходит.

Во-вторых, проекции видимого мира на сетчатках обоих глаз отображаются в поле 17 в виде двух почти идентичных проекций, которые затем объединяются межкорковыми связями каким-то еще не вполне понятным образом. Ученым, однако, известно, что по крайней мере на уровне коленчатого тела и поля 17 благодаря довольно сложной системе проводящих путей зрительная информация от каждого из двух глаз остается пространственно обособленной. У наркотизированных животных клетки слоя IV поля 17 реагируют на импульсы, идущие от обоих глаз. В клетках, расположенных выше и ниже слоя IV, ответные реакции носят более сложный характер. Здесь, как правило, некоторые клетки лучше реагируют на сигналы от одного глаза, чем от другого; иными словами, влияние одного глаза на такие клетки «доминирует» над влиянием другого глаза. Действительно, можно проследить за ходом нервных путей от определенных участков поля зрения одного глаза через связи в коленчатом теле вплоть до зрительной коры. Здесь эти пути подходят к чередующимся «колонкам глазодоминантности», которые формируются на расстояниях примерно 0,4 мм друг от друга и пронизывают всю толщу коры. Если взглянуть сверху на колонки глазодоминантности поля 17, то те из них, которые связаны с одним глазом, сольются в изогнутые гребешки, очень напоминающие кожные узоры на пальцах (см. рис. 53).

Рис. 53. Узор из колонок глазодоминантности в зрительной коре. Нейроны, максимально реагирующие на сигналы от левого или от правого г паза, образуют чередующиеся гребни (на рисунке белые или черные). При введении электрода под любым углом встречаются клетки того и другого типа. Рисунок гребней, напоминающий отпечатки пальцев, у разных индивидуумов различен.

При изучении этих колонок были выявлены удивительные факты, касающиеся формирования коры. Если один глаз будет закрыт от рождения, то нейроны коленчатого тела, с которыми связаны ганглиозные клетки сетчатки этого глаза, и соответствующие им колонки доминантности в коре не смогут нормально развиваться. И хотя сетчатка закрытого глаза полностью сохранит свою чувствительность (в чем можно убедиться, открыв этот глаз), ее связи не будут обеспечивать полноценной ответной реакции в коленчатом теле или коре. Колонки доминантности, связанные с закрытым глазом, окажутся более узкими, чем в норме. В то же время влияние глаза, функционировавшего с рождения, распространится на значительно большую, чем обычно, область коры. Эти эксперименты показывают, что степень связи между сенсорными нейронами и соответствующими клетками коры может регулироваться уровнем активности сенсорной системы.

Зрительные пути правого и левого глаза могут служить наглядной иллюстрацией параллельных цепей (так же, как и слуховые пути от обоих ушей, если бы мы рассматривали эту систему). Зрительная информация от рецепторных клеток сетчатки каждого глаза идет практически параллельными путями до зрительной коры (см. рис. 46).

Наши два глаза с удвоенными зрительными путями не просто «уравновешивают» лицо или обеспечивают резерв на случай выхода из строя одного глаза. Они работают сообща для достижения суммарного эффекта. Разница в положении глаз обусловливает незначительные различия в идущей параллельными путями зрительной информации, а это в свою очередь позволяет нам видеть предметы в трех измерениях. Когда эта информация объединяется в зрительных интеграционных центрах коры, мы видим один трехмерный мир.

Деятельность других параллельных путей тоже обогащает наше зрительное восприятие. Различные аспекты информации, получаемой от каждого глаза, передаются по трем параллельным каналам.
Информация о специфике образа (распознавание «точек») поступает через латеральное коленчатое тело в первичную зрительную кору.
Информация, касающаяся движения, по различным аксонам направляется от сетчатки к верхним бугоркам четверохолмия и к полю 17 зрительной коры.
Сигналы об уровне рассеянного света идут в супрахиазменные ядра.
Вся эта информация, передаваемая по различным, но параллельным путям, в конце концов вновь объединяется в интегрирующих сетях коры и воссоздает полную картину того, что мы видим.
Этот общий принцип разделения первичной информации по отдельным перерабатывающим каналам для последующего ее воссоединения, как мы увидим дальше, широко используется как в сенсорных, так и в двигательных системах.

Цвет - особое качество зрительного ощущения

Цвет - это одно из качеств, которое едва ли нуждается в описании. Каждый знает разницу между черно-белым и цветным кино. Однако о восприятии цвета следует кое-что сказать.
Мы уже упоминали о существовании трех типов колбочек - специализированных цветочувствительных рецепторов сетчатки. Физиологическое отображение цвета начинается именно с этих клеток. Хотя тремя основными цветами обычно считают красный, синий и желтый, ганглиозные клетки дают оптимальную реакцию на красный, синий и зеленый цвета.

Анализ пигментов, содержащихся в колбочках, и прямая регистрация активности этих рецепторов в идеальных экспериментальных условиях подкрепляют представление о том, что для восприятия каждого из трех первичных цветов -красного, желтого и синего - существует особый тип колбочек. Но когда физиологи занялись изучением выходных сигналов от сетчатки и исследовали ответы ганглиозных клеток при воздействии того или иного чистого цвета, ситуация усложнилась и если хотите, стала более интересной. Эксперименты показали, что ганглиозные клетки и активируемые ими нейроны латерального коленчатого тела реагируют так, как будто существует не три, а четыре первичных цвета: красный, желтый, синий и зеленый. Но если нет таких колбочек, пигмент которых обусловливал бы специфическую реакцию на зеленый цвет, то как объяснить полученные результаты?

Один из ключей к разгадке тайны восприятия зеленого цвета был получен в результате несложных экспериментов. Людей расспрашивали о цветах, которые они видят в определенных условиях. Если смотреть на серое пятно, окруженное ярко-зеленым кольцом, то серый цвет начинает приобретать красноватый оттенок. Если некоторое время фиксировать взором ярко-красный предмет, а потом закрыть глаза, то возникнет так называемый последовательный образ этого предмета, окрашенный в зеленый цвет. Этот хроматический эффект последовательного контраста и есть источник так называемого «зеленого свечения», которое можно увидеть, если пристально смотреть на заходящее солнце. Последовательный образ синего предмета окрашен в желтый цвет (это легче увидеть, если синий предмет находится на черном фоне).

Таким образом, получается, что синий и желтый цвета, так же как красный и зеленый, как-то связаны между собой. Но эти сопоставления, возможно, не покажутся вам верными. Ведь вы знаете, что для получения зеленого цвета нужно смешать синюю и желтую краски. Как же происходит восприятие зеленого цвета?

Восприятие цвета начинается с того, что специализированные колбочки распознают один из трех первичных цветов. Колбочки связаны с биполярными клетками, а те - с ганглиозными. Решающее значение для восприятия зеленого цвета имеют нейроны локальных сетей сетчатки - горизонтальные клетки.

Одна из теорий, лучше других согласующаяся с экспериментальными данными, носит название теории оппонентных цветов. Она была впервые сформулирована в XIX веке немецким физиологом Эмилем Герингом. По его мнению, некоторые цвета являются «антагонистами»: желтый и синий, красный и зеленый, черный (отсутствие цвета) и белый (сочетание всех цветов). Эксперименты, проведенные спустя сто лет и основанные на регистрации активности отдельных клеток, дали именно те результаты, которых можно было ожидать, исходя из этой теории.
Ганглиозные клетки, воспринимающие красный цвет в центре рецептивного поля, на его периферии воспринимают зеленый, и наоборот. Клетки, реагирующие на желтый цвет в центре, чувствительны к синему на периферии, и наоборот. Колбочки активируются светом определенного цвета. Благодаря взаимодействию с горизонтальными клетками происходит комбинирование различных «цветовых» сигналов при их конвергенции (от лат. converge - приближаюсь, схожусь) на ганглиозные клетки сетчатки. Вот почему ганглиозные клетки распознают цвета-«оппоненты», и зеленый выступает антагонистом красного (см. рис. 54).

Рис. 54. Возможный способ кодирования цветов в сетчатке.
Вверху: ганглиозная клетка активируется красным цветом в центре поля и зеленым на периферии
 Внизу: активность ганглиозных клеток, получающих входные сигналы от «желтых» колбочек в центре поля и «синих» - на периферии.
У этих цветоспецифических рецептивных полей отмечается антагонизм центра и периферии.
(Колбочек, воспринимающих зеленый цвет, не существует. Это качество возникает благодаря конвергенции горизонтальных нейронов локальных сетей в пределах сетчатки.)

Недавние исследования показали, что цветовая специфичность сигналов от сетчатки сохраняется и в зрительной коре. Клетки, расположенные в верхних слоях зрительной коры, обладают цветоспецифическими рецептивными полями и реагируют на цвета-«оппоненты». В то же время они не обнаруживают избирательности по отношению к ориентации линий или краев. На этом основании Дэвид Хьюбел предположил, что система переработки цветовой информации отделена от системы, перерабатывающей ориентационную информацию, но действует параллельно с ней.

Предметное и пространственное зрение

Обычно мы не расчленяем зрительное восприятие на видение одним или двумя глазами, цветное или черно-белое зрение, пока не возникают какие-нибудь неполадки. Большей частью мы просто видим.

Незамеченными остаются и некоторые другие аспекты обработки зрительной информации. Один из таких аспектов заключается в том, что зрительная система позволяет определить, где именно находится в окружающем нас пространстве данный объект и что он собой представляет. До недавнего времени полагали, что эти два процесса протекают раздельно, начиная с довольно ранних стадий обработки входных сигналов. Функции, связанные с пространственной информацией, приписывали верхним буграм четверохолмия, так как именно оттуда исходят команды к мышцам, поворачивающим глаза при фиксации взором объектов. Способность распознавать признаки объекта объясняли их последовательным анализом. Однако проведенные недавно эксперименты показали, что эти представления, вероятно, ошибочны: похоже, что оба вида зрительного анализа зависят от потока информации, идущего от коленчатого тела к полю 17, и от различных систем, которым поле 17 передает эту информацию для дальнейшей обработки.

Распознавание признаков предмета. Недавно была исследована способность обезьян запоминать очень сложные особенности предметов, чтобы получать пищевое вознаграждение. Так, например, животные должны были выбрать деревянный квадрат с нанесенными на него полосами, а не точно такой же предмет, но без полос. После того как обезьяны запоминали отличительный признак, у них удаляли небольшие участки коры в одном из тех мест, где прослеживались пути, участвующие в обработке зрительной информации. Оправившихся после операции животных вновь подвергали тем же тестам. После двустороннего удаления той части височной доли, куда поступает зрительная информация, животное еще могло видеть - оно брало в руки предметы, чтобы получить пищу, но выбирать квадраты с полосками оно уже не могло. Этот хирургический метод в сочетании с выявлением сетей и регистрацией электрической активности показал, что функция «распознавания признаков» связана с участком височной доли у нижнего края коры.

Американский нейропсихолог Мортимер Мишкин высказал предположение, что в клетках этой зрительной области височной доли сохраняется какой-то «след» виденного ранее предмета. Этот «след» затем используется как образец для сравнения при восприятии следующего предмета. При сходстве возникает одна реакция («я знаю этот предмет»), а при несходстве - другая («раньше я никогда его не видел»). При регистрации активности отдельных нейронов этой области были обнаружены клетки, специфически реагирующие на лица одних обезьян и не реагирующие на лица других независимо от ракурса. Если у обезьян отдельные черты лица - нос, рот, глаза - были закрыты маской, такие «неполные» лица не вызывали ответной реакции тех же клеток.

Некоторые исследователи, говоря о клетках с таким сложным набором специфических требований к стимулу, называют их «бабушкиными». Это означает, что такая клетка активируется лишь тогда, когда по совокупности своих элементов весь объект распознается, например, как «бабушка». Возражение, что в мире слишком много предметов, чтобы для каждого нашлась своя зрительная клетка, едва ли можно признать состоятельным. На столь высоком уровне зрительного распознавания выбор используемых признаков, вероятно, зависит от многих взаимодействий, происходящих на более низких уровнях, на каждом из которых значительная часть информации отсеивается. Клетки височной зрительной коры получают также и другие виды сенсорной информации, в том числе слуховую и, возможно, обонятельную. Эти сенсорные данные тоже помогают распознаванию предметов в мире, лежащем за пределами лаборатории.

Таким образом, активацию «бабушкиной» клетки можно рассматривать как конечный результат анализа признаков сложного объекта. После того как все его детали «изучены», в дальнейшем достаточно будет опознать лишь некоторые из них, для того чтобы сравнить увиденный новый предмет с тем, который приходилось видеть раньше. Таким образом, клетки, которые «узнавали» бы бабушку, в действительности не существуют, а есть лишь клетки, которые могут воспринимать детали высокого порядка и сравнивать их с имеющимися в памяти образцами. Этот способ позволяет анализировать почти бесконечное разнообразие предметов внешнего мира.

Распознавание пространственной информации. Обезьяны с повреждениями височных долей иногда теряют способность различать предметы по их виду, но все еще могут выделять объекты по их положению в пространстве. Обезьяна, которую научили указывать любой свободно перемещаемый предмет, расположенный ближе всего к любому неподвижно закрепленному предмету, вполне справляется со своей задачей и после двусторонней операции на височных долях. Однако после удаления другого участка коры, связанного со зрением, - у верхнего края теменной доли впереди поля 17-задачи на пространственную локализацию предметов становятся невыполнимыми.

Эти результаты позволяют думать, что на высших уровнях переработки информации параллельно действуют две системы зрительного анализа: одна определяет место предмета в пространстве, а другая - его собственную природу. В каждой из этих систем действуют разные пути и разные комбинации нейронных сетей; обе системы зависят от информации, получаемой от ранних звеньев зрительного «конвейера», но используют ее несколько по-разному, объединяя в процессе дальнейшей переработки с данными других сенсорных систем. Когда на более поздней стадии конечные результаты этих параллельных процессов интегрируются, возникает законченный зрительный образ окружающего мира.

Насколько обычна параллельная обработка информации?

Признаки параллельной обработки информации такого же типа, что и в зрительной системе, обнаружены по меньшей мере в двух других сенсорных системах - слуховой и осязательной (тактильной). Ранние исследователи, пытавшиеся проследить пути периферических сенсорных нервов от их окончаний у поверхности тела до коры головного мозга, установили, что проекция тела в осязательной области коры имеет вид маленького человечка - «гомункулюса» или, соответственно, «маленькой обезьянки» (см. рис. 55) с сильно искаженными пропорциями: лицо, губы, язык и пальцы занимают здесь гораздо больше места, чем ноги, туловище и спина. По-видимому, участки кожи, лучше представленные в коре, способны точнее воспринимать тактильные раздражители.

Рис. 55. Карта кортикальных областей, в которые проецируются тактильные сигналы от поверхности тела.
Участки тела с высокой плотностью сенсорных рецепторов, такие как лицо или пальцы, имеют более обширные корковые проекции, чем участки с низкой плотностью рецепторов.
Границы этих проекций у разных индивидуумов несколько различны.

Более поздние исследования с применением более тонких методов регистрации активности и выявления связей показали, что в сенсорной коре действительно существует ряд проекций («карт») поверхности тела. Эти проекции выходят за пределы тех зон сенсорной коры, которые, как считалось ранее, связаны с ядрами таламуса, получающими и интегрирующими информацию о давлении и тактильных раздражителях (см. табл. 3.1 и 3.2). Наличие этих как будто бы «излишних» проекций тела наводит на мысль, что в коре, возможно, происходят дополнительные процессы синтеза различных сведений, доставляемых тактильными рецепторами.

Большое количество данных, полученных при анализе нервных сетей и рецептивных полей, говорит в пользу того, что переработка импульсов от рецепторов кожи, мышц и суставов ведется раздельно, но параллельно. Различные элементы информации направляются в кору мозга независимыми путями, но в конечном итоге вновь объединяются с помощью каких-то пока еще неизвестных механизмов для воссоздания цельных образов окружающего нас мира. Возможно, это относится и к бинауральной (т.е. идущей от двух ушей) слуховой информации. По-видимому, образы внешнего мира конструируются на поздних стадиях сенсорного анализа путем объединения по возможности максимально «очищенных» данных, пропущенных сквозь фильтры отдельных сенсорных систем.

Если бы мы искали в сенсорных системах простоту, то все эти усложнения должны были бы привести нас в замешательство. Но даже приведенные нами краткие сведения ясно показывают, что именно благодаря сложности процессов, происходящих в мозгу, мы имеем возможность различать детали, соединять их и в конце концов решать, встречались ли мы с тем или иным чувственным образом в прошлом. Если мы узнаём что-либо, то иногда это позволяет с уверенностью решить, что нам делать дальше. Если же не узнаём, то либо ждем дополнительной информации, а затем принимаем решение, либо предпринимаем какие-то действия (например, ворчим или улыбаемся), чтобы получить такую информацию.

Когда к вам обращаются по телефону, сколько слов вам нужно услышать, чтобы узнать голос собеседника? Близкого друга вы узнаете сразу же, по единственному слову, а менее знакомый человек должен будет дать какие-то объяснения, прежде чем вы догадаетесь, кто звонит. Когда вы слушаете простую магнитофонную запись, вы иногда с трудом можете отличить один голос от другого. А ведь в студии звукозаписи каждый голос и каждый инструмент записывается на отдельный канал, а затем они вновь смешиваются звукорежиссером для получения полноценного, сбалансированного звука. Наши источники первичной сенсорной информации таким же образом отделяются друг от друга, подвергаясь независимой фильтрации, чтобы быть готовыми для окончательного объединения. От скорости процессов параллельной переработки зависит наша способность к анализу. Система, основанная на последовательной переработке различного рода информации (сначала о форме объекта, затем о цвете, о движении, о местонахождении и т.д.), работала бы слишком медленно, чтобы держать нас в курсе событий, происходящих в быстро меняющемся мире.
-----------------------------
Рекомендуем посмотреть книги: "Быстрый холод вдохновенья", "Как мы видим то, что видим".
-----------------------------

- Оглавление - 1.1- 1.2 - 1.3 - 1.4 - 1.5 - 2.1 - 2. - 2.3 - 3.1 - 3.2 - 3.3 продолжение - 3.5 - 4.1 -
 

   

- человек - концепция - общество - кибернетика - философия - физика - непознанное
главная - концепция - история - обучение - объявления - пресса - библиотека - вернисаж - словари
китай клуб - клуб бронникова - интерактив лаборатория - адвокат клуб - рассылка - форум

Изготовление на заказ, доставка.
vkpolymer.ru